Robust estimation of mixing measures in finite mixture models
نویسندگان
چکیده
In finite mixture models, apart from underlying mixing measure, true kernel density function of each subpopulation in the data is, in many scenarios, unknown. Perhaps the most popular approach is to choose some kernel functions that we empirically believe our data are generated from and use these kernels to fit our models. Nevertheless, as long as the chosen kernel and the true kernel are different, statistical inference of mixing measure under this setting will be highly unstable. To overcome this challenge, we propose flexible and efficient robust estimators of the mixing measure in these models, which are inspired by the idea of minimum Hellinger distance estimator, model selection criteria, and superefficiency phenomenon. We demonstrate that our estimators consistently recover the true number of components and achieve the optimal convergence rates of parameter estimation under both the welland mis-specified kernel settings for any fixed bandwidth. These desirable asymptotic properties are illustrated via careful simulation studies with both synthetic and real data. 1 AMS 2000 subject classification: Primary 62F15, 62G05; secondary 62G20.
منابع مشابه
Convergence of Latent Mixing Measures in Finite and Infinite Mixture Models By
This paper studies convergence behavior of latent mixing measures that arise in finite and infinite mixture models, using transportation distances (i.e., Wasserstein metrics). The relationship between Wasserstein distances on the space of mixing measures and f -divergence functionals such as Hellinger and Kullback–Leibler distances on the space of mixture distributions is investigated in detail...
متن کاملThe Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models
Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...
متن کاملOn strong identifiability and optimal rates of parameter estimation in finite mixtures
Abstract: This paper studies identifiability and convergence behaviors for parameters of multiple types, including matrix-variate ones, that arise in finite mixtures, and the effects of model fitting with extra mixing components. We consider several notions of strong identifiability in a matrix-variate setting, and use them to establish sharp inequalities relating the distance of mixture densit...
متن کاملOn strong identifiability and convergence rates of parameter estimation in finite mixtures
Abstract: This paper studies identifiability and convergence behaviors for parameters of multiple types, including matrix-variate ones, that arise in finite mixtures, and the effects of model fitting with extra mixing components. We consider several notions of strong identifiability in a matrix-variate setting, and use them to establish sharp inequalities relating the distance of mixture densit...
متن کاملConvergence of latent mixing measures in finite and infinite mixture models
We consider Wasserstein distances for assessing the convergence of latent discrete measures, which serve as mixing distributions in hierarchical and nonparametric mixture models. We clarify the relationships between Wasserstein distances of mixing distributions and f -divergence functionals such as Hellinger and Kullback-Leibler distances on the space of mixture distributions using various iden...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017